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Abstract. This paper has been inspired by a note on (De) homogenization of

Sagbi (Subalgebra Analog to Gröbner Bases for Ideals) Bases in a polynomial
ring over a field K [4]. It intends to study the behavior of Sagbi Bases for

Free Associative Algebras under non-central (De)homogenization technique
with respect to an additional variable. This paper demonstrates how Sagbi

Bases behave differently in Free Associative Algebras under the said technique

compared to Sagbi Bases in polynomial rings. The explanation has been made
by illustrating a few examples as well.

1. Introduction

In Computational Commutative Algebra, polynomial subalgebra is the second
most important topic in Ring theory after Ideals. Concept of Sagbi ( Subalgebra
Analog to Gröbner Bases for Ideals ) Bases for subalgebra parallel the role of
Gröbner Bases for Ideals. The theory of Sagbi bases was introduced by Robbiano
and Sweedler [6] and independently by Kapur and Madlener. The motivation for
this paper is also bought from [1] non- central (De)homogenization of Gröbner
bases. Since many of the basic concepts of Gröbner bases also apply to subalgebra,
extracting results of applying homogenization and dehomogenization on Sagbi Bases
is natural. The commutative case has already been discussed in [4]; This paper
addresses the non-central (De)homogenization of Sagbi bases in the case of non-
commutative rings.

The paper herein comprises three sections. Section 2 introduces related terms,
definitions, and notations, and section 3 consist of a detailed discussion on how
(De) homogenization works in the case of Free Associative Algebra by computing
Sagbi bases for (De)homogenized Subalgebras. In this section, we will present two
important results (Theorem 3.5 and 3.6) about Sagbi Bases of homogenized and
dehomogenized subalgebra.

2. Notation and definition

Let us review some terminologies and results of Sagbi bases theory for free as-
sociative algebras i.e R = K⟨X⟩ = K⟨X1, X2, ...Xn⟩. The reader is expected to go
through the whole section to make sure the notations used are clear.
In commutative Sagbi theory in which we have R = K[X] = K[x1, x2, ...xn], the
role of monomials is played by exponent functions; i.e., for a monomial Xα =
Xα1

1 , Xα2
2 , Xα3

3 ...Xαn
n αi ∈ N, we speak of exponent vector α = (α1, ...αn). Since
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this approach is not possible in the non-commutative case, i.e., when R = K⟨X⟩,
we here use only monomials. The set of all monomials is represented as Mon(R). A
Linear combination of these monomials with scalars from K forms a polynomial.
We have K⟨X⟩, the free associative algebra generated by elements X1, X2....Xn.
Each element f ∈ K⟨X⟩ has a degree given by the cardinality of symbols composing
it, so for, e.g., deg(X1X2X1) = 3. For f written as a combination of more than one
monomial, the highest degree of monomials in f will give the degree of f .
Let Rj be the K-vector space spanned by all homogeneous polynomials of degree
j. The set of monomials u of vector space Rj with degree(u)=j form a K basis of
this vector space and is of finite dimension.
If G is a subset of K⟨X⟩(not necessarily finite), we use K⟨G⟩ for the subalgebra of
K⟨X⟩ generated by G. This notation is natural since elements of K⟨G⟩ are pre-
cisely the polynomials in the set of formal variables G viewed as elements of K⟨G⟩.

Now we come to the ordering of elements. We choose the deglex ordering ≺
such that u1 ≺ u2 iff either deg(u1) ≺ deg(u2) or deg(u1) = deg(u2), and u1

is lexicographically less than u2, We say that u1 is lexicographically less than u2

if either there is r ∈ K⟨X⟩ such that u2 = u1r or there are l, r1, r2 ∈ K⟨X⟩,
aj1 , aj2 with j1 ≺ j2 such that u1 = laj1r1, u2 = laj2r2. Also, for each non-zero
element f ∈ K⟨X⟩, we associate LW (f) as the leading word of f and LC(f)
as the leading coefficient of f . Whereas, for a subset G ⊂ K⟨X⟩, we define
LW≺(G) = {LW≺(f)|f ∈ G}.
(The above definition depends obviously on an ordering of the generating symbols).

We present an example here: let K⟨X⟩ = ⟨a1, a2⟩. Then we have:

1 ≺ a1 ≺ a2 ≺ a21 ≺ a1a2 ≺ a2a1 ≺ a22 ≺ a31 ≺ a21a2 ≺ a1a2a1 ≺ a1a
2
2 ≺ a2a1a2...

It can be noticed that since it is not a well-ordering infact aj+1
1 ai2 ≺ aj1a

i+1
2 , thus

it can be remarked that “lexicographically less” is not good here.
We define extended lexicographic grading on K⟨X,T ⟩ as:

1 ≺T T ≺T a1 ≺T a2 ≺T a21 ≺T a1a2 ≺T a2a1 ≺T a22 ≺T a31 ≺T a21a2 ≺T

a1a2a1 ≺T a1a
2
2 ≺T a2a1a2...

Now we gather some definitions of Sagbi bases for our reference. For a detailed
study refer to [6].

Definition 2.1. A subset S of K⟨G⟩ is called Sagbi basis of K⟨G⟩ with respect to
≺ if

K⟨LM≺(K⟨G⟩)⟩ = K⟨LM≺(S)⟩
In other words for any f ∈ K⟨G⟩ we have m(S) ∈ Mon(S) such that LM≺(f) =
LM≺(m(S)).

Though Algorithms were developed for finding the Sagbi basis for subalgebras,
the Following result helped detect if a given subset of a subalgebra is a Sagbi basis.

Proposition 2.2. ([3], Proposition 4) Let W ⊂ K⟨X⟩ be such that LW≺(wi) ̸=
LW≺(wj) for wi ̸= wj , wi, wj ∈ W. If no word in LW≺(W) is a prefix(proper left
factor) of some other word in LW≺(W), or no word in LW≺(W) is a suffix(proper
right factor) of some other, then W is a Sagbi basis.
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3. (De)homogenized Sagbi basis in
Free Associative Algebras

For fixed N-graded structures,K⟨X⟩ = ⊕p∈NK⟨X⟩p andK⟨X,T ⟩ = ⊕p∈NK⟨X,T ⟩p.
Consider a ring epimorphism,

φ : K⟨X,T ⟩ → K⟨X⟩

defined as φ(Xi) = Xi and φ(T ) = 1. The surjectivity of the map implies that each
f in K⟨X⟩ is the image of some homogeneous element in K⟨X,T ⟩. In other words,
if f = fp + fp−1 + ...+ fp−s with fj ∈ K⟨X⟩j and fp ̸= 0, then

f̃ = fp + Tfp−1 + ...T sfp−s

is a degree p homogeneous element in K⟨X,T ⟩ such that φ(f̃) = f . This f̃ obtained
is called non-central homogenization of f with respect to T . Where T is a non-
commuting variable. Further, if we select arbitrary element F from K⟨X,T ⟩, we
apply dehomegenization of F as, F∼ = φ(F ). This element F∼ is called as non-
central dehomogenization of F with respect to T in K⟨X⟩.

Lemma 3.1. ([1], lemma 2.2) Fixing the notations and assumptions described
above, the following statements are valid:
(i) For each non zero element s in K⟨X⟩,

(s∼)∼ = s,

(ii) If s ∈ K⟨X⟩, then

LW≺(s) = LW≺(LH(s)) w.r.t ≺

If S ∈ K⟨X,T ⟩, then

LW≺T
(S) = LW≺T

(LH(S)) w.r.t ≺T ,

(iii) For each s ̸= 0 in K⟨X⟩, we have

LW≺(s) = LW≺(s̃) w.r.t ≺ .

On defining these we now see how homogenization is applied to algebras. So,
for a subalgebra B = K⟨W ⟩ i.e subalgebra generated by a subset W of K⟨X⟩, we
write

W̃ = {w̃ | w ∈ W} ∪ {XiT − TXi | 1 ⩽ i ⩽ n},
and we let

W ∗ = {w̃ | w ∈ W}

Note that W̃ = W ∗ ∪ T where T = {XiT − TXi | 1 ⩽ i ⩽ n}.

Definition 3.2. Let B be a subalgebra inK⟨X⟩ andD be a subalgebra inK⟨X,T ⟩.
(a) For B̃ = {f̃ | f ∈ B} ∪ {XiT − TXi | 1 ≤ i ≤ n}, the subalgebra B = K⟨B̃⟩ in
K⟨X,T ⟩ is called the homogenization of B with respect to the variable T .
(b) The set D∼ = {f∼ | f ∈ B} is called the dehomogenization of subalgebra D.
This D∼ is a subalgebra of K⟨X⟩.

Now, we will see through an example that for a nonempty subset W of K⟨X⟩
and B = K⟨W ⟩, in general, K⟨W̃ ⟩ ⊂ B.



4 ANUM D/O ABBAS

Example 3.3. Let B = K⟨W ⟩ be a subalgebra generated by a subset W of K⟨X,Y, Z⟩,
where W = {f1, f2} with f1 = XY 2 +XY and f2 = XY 2 +XZ. Now it may be
noted that (f1 − f2)

∼ = (XY + XZ) is contained in B, but not in the subalgebra

K⟨W̃ ⟩ = K⟨XY 2+TXY,XY 2+TXZ,XT −TX, Y T −TY, ZT −TZ⟩ which does
not contain any homogeneous polynomial of degree 2, not involving T .

Before stating our main theorem, we discuss a few important theorems and
lemma.

Theorem 3.4. Let B be a subalgebra in K⟨X⟩, then (B)∼ = B.

Proof 3.5. We have B ⊂ (B̄)∼. Now let f ∈ (B̄)∼, by definition 3.2 of ho-
mogenized subalgebra, dehomogenization of B̄ will gives a single set of the form
{(f̃)∼|f ∈ B}, which by 3.1(i) gives an element of B. And hence f ∈ B.

Lemma 3.6. The set T = {XiT − TXi | 1 ≤ i ≤ n} is a Sagbi Basis of K⟨X,T ⟩
with respect to any monomial ordering on ≺T .

Proof 3.7. Since LW≺T
(XiT − TXi) = XiT , leading words(monomials) of el-

ements of this set are neither prefixes nor suffixes of other words. Hence by the
preposition 2.2, this set is a Sagbi Basis.

The following theorem examines the behavior of Sagbi basis of subalgebras under
non-central homogenization:

Theorem 3.8. Let B = K⟨S⟩ be the subalgebra of K⟨X⟩ generated by a subset S
and B̄, the homogenization of the subalgebra B in K⟨X,T ⟩ with respect to T . The
following two statements are equivalent
(a) S is a Sagbi basis for B in K⟨X⟩ with respect to monomial ordering ≺.

(b) S̃ = {s̃ | s ∈ S}
⋃
{XiT − TXi} is a Sagbi basis for B̄ in K⟨X,T ⟩ with respect

to ≺T .

Proof 3.9. (a)⇒ (b) In order to prove that S̃ is a Sagbi basis for B̄, We claim

that for any F ∈ B̄, there exists m(S̃) such that LW≺T
(F ) = LW≺T

(m(S̃)).
Since LW≺T

(F ) = LW≺T
(LH(F )) lemma 3.1(iI) and F ∈ B̄, we may assume that

F is a non-zero homogeneous polynomial of K⟨X,T ⟩.
Now, the element F in B is a member of the subalgebra generated by B̃. It may be
noticed that, in general, the leading monomial of F will be of form,

LW≺T
(F ) = u1v1u2v2...uivj

where,
ui = LW≺T

(hi) for hi ∈ Ω⟨B∗⟩
vj = LW≺T

(wj) for wj ∈ Ω⟨T ⟩
It is sufficient to show that our claim is true when LW≺T

(F ) = uv where u =
LW≺T

(f) for some f ∈ K⟨B∗⟩ and v = LW≺T
(w) for some w ∈ K⟨T ⟩. By

using lemma 3.1(iii) we have u = LW≺T
(f) = LW≺(f∼). Since S is a Sagbi

basis for B, some m1(S) exists such that LW≺(f∼) = LW≺(m1(S)). So we have
u = LW≺(m1(S)). Again by the same lemma, we have u = LW≺(m1(S)) =
LW≺(m1(S

∗))1 for some m1(S
∗) where S∗ = {s̃|s ∈ S}.

While on the other hand, since the set T is a Sagbi Basis by lemma 3.6, ∃ some
m2(T ) such that v = LW≺T

(w) = LW≺T
(m2(T )).

1The polynomial m1(S∗) is the non-central homogenization of the polynomial m1(S).
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Now we let m(S̄) = (m1(S
∗)).(m2(T )), where S̄ = S∗ ∪ T . Taking the leading

monomial on both sides we have LW≺T
(m(S̄)) = LW≺T

[(m1(S
∗)).(m2(T ))], which

gives

LW≺T
(m(S)) = LW≺T

(m1(S
∗)).LW≺T

((m2(T )).

It can now be noticed that LW≺T
(m1(S

∗)) and LW≺T
((m2(T )) are u and v, re-

spectively. So, we have

LW≺T
(m(S̄)) = u.v = LW≺T

(F ).

(b)⇒ (a) Conversely we suppose S̃ is a Sagbi basis for the homogenized algebra B̄

of B in Φ⟨T ⟩. Let f ∈ B, then f̃ ∈ B̄. Therefore, LW≺T
(f̃) = LW≺T

(m(S̃)) for

some m(S̃)

Since LW≺T
(m(S̃)) = LW≺(m(S̃)∼) = LW≺(m(S)) and by lemma 3.1(ii) LW≺(f) =

LW≺T
(f̃). Then it follows that

LW≺(f) = LW≺(m(S)),

i.e., S is a Sagbi basis for B.

This theorem is an exciting tool for evaluating the Sagbi basis of homogenized
subalgebra by just passing it onto the homogenized generators. This result thus
worked in the same way as it did for non-central homogenization on a Gröbner
basis. Let us see an example here

Example 3.10. Let B = K⟨S⟩ be a subalgebra generated by a subset S = {s1 =
X2Y + 1, s2 = 2Y X − Y, s3 = X3 − Y 2} of Ω⟨X,Y ⟩. This set S by proposition 2.2
is a Sagbi Basis w.r.t monomial ordering X≺Y . So, by theorem 3.8, Sagbi basis of
homogenized subalgebra B̄ is given as {X2Y +T 3, 2Y X −TY,X3 +TY 2}∪ {XT −
TX, Y T − TY } .

But things did not work well for the case of dehomogenized subalgebras. We
will see and explore through a simple example where given a homogeneous Sagbi
basis of a homogeneous subalgebra its dehomgenization does not give a Sagbi basis
of dehomogenized subalgebra.

Example 3.11. Consider a set S = {TY Z, TZY, T 2Y + T 2X,XT − TX, Y T −
TY, ZT −TZ} and D = K⟨S⟩ a homogeneous subalgebra of K⟨X,Y, Z, T ⟩. The set
S is a Sagbi basis with respect to ordering T ≺grlex X ≺grlex Y ≺grlex Z by the
proposition 2.2. We will show that the set S∼ = {Y Z,ZY, Y +X} is not a Sagbi
basis of D∼ w.r.t ordering X ≺grlex Y ≺grlex Z.
Let s1 = Y Z, s2 = ZY, s3 = Y + X ∈ D∼. Furthermore, we take P (S∼) =
s1s3 − s3s2 = (Y Z)(Y + X) − (Y + X)(ZY ) = Y ZY + Y ZX − Y ZY − XZY =
Y ZX − XZY ∈ D∼. It may be noted that there does not exist any m(S∼) such
that LW≺(P (S∼)) = Y ZX = LW≺(m(S∼)) since the leading words of si do not
contain X. Hence S∼ is not a Sagbi basis of D∼.

Acknowledgment:
Thanks to Dr. Junaid Alam Khan and my institute (IBA) for motivating me to
write my first academic writing in Mathematics.



6 ANUM D/O ABBAS

References
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